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Abstract

Achieving optimal performance over a finite-time horizon has gained a lot of
attention in many engineering applications. Among them the Finite Horizon
Linear Quadratic Regulator (FHLQR) for continuous-time linear-time-varying
systems has been well studied with an optimal solution characterized by the
Differential Riccatti Equation (DRE). The solution of the DRE requires that the
exact system dynamics are known. However, this assumption may not always
hold, as the plant model might not completely known or may change over time
due to wear and tear. This paper proposes a dual-loop iterative algorithm to
find the optimal solutions of the FHLQR for continuous time LTV systems.
The inner loop utilises input trajectories based on an estimate of the optimal
control gain with the addition of some excitation noise, and produces measured
state trajectories. The outer loop improves the estimate of the optimal control
gain utilising these measured state trajectories. It has been shown in this work
that with appropriate selection of the discretisation parameter T and the set of
excitation signals, the proposed dual-loop iterative algorithm can converge to an
arbitrarily small neighbourhood of the optimal solution. A simulation example
demonstrates the effectiveness of the proposed method.

Keywords: Finite Horizon Linear Quadratic Regulator, Continuous Time,
Dual-loop Iterative Algorithm

1. Introduction

The optimal control problem, in which the objective is to develop a control
strategy which minimises a given cost function, is commonly-considered in the
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control field. The foundation of many solutions to this problem is Bellman’s Op-
timality Principle [1], and the solution of the Hamilton-Jacobi-Bellman (HJB)
Equation. Solving the HJB Equation, however, generally requires precise knowl-
edge of the dynamics, and often does not have a closed form solution. Although
these algorithms have their place, in real world systems exact knowledge of the
dynamics is often not available. Furthermore, the dynamics can also undergo
changes over time, and these changes are more pronounced in some systems
than in others.

Within this paper, the well-studied Continuous Time Finite Horizon (FH)
Linear Quadratic Regulator (LQR) problem is considered. Many engineered
systems are often posed as this problem, where the objective is to minimise a
cost function quadratic in both error in state and control effort, over a given
finite time period. The finite duration of time given in many of the practical
specified tasks lends itself to the finite horizon of the controller, which provides
an explicit mechanism to trade off the accuracy of task completion with the
effort we are willing to spend to achieve it. If the dynamics are known, the
optimal control scheme for this problem can be calculated using the Differential
Riccatti Equation (DRE). This cannot be calculated if the dynamics are un-
known. Furthermore, if an inaccurate model is used, or if the dynamics changes
between iterations (either slowly, for example due to wear and tear, or suddenly
due to a part failing), the control scheme becomes suboptimal. Such inaccurate
or unknown dynamics can also be found in the examples of engineered systems;
and is exceptionally pronounced among complex biological systems [2] which
motivated this work.

As such, this paper proposes an algorithm which solves for the optimal
control gain without requiring the knowledge of the dynamics. The proposed
method utilises an iterative process to compute the optimal gain matrix using
measured state trajectories, using the results of an iterative solution to the DRE
proposed in [3]. By not assuming the knowledge of the system dynamics, the
proposed algorithm can therefore re-identify an optimal control strategy should
the plant dynamics change. The proposed algorithm is posed as the solution to
the Finite Horizon Linear Quadratic Regulator (FHLQR) problem for Linear
Time Varying (LTV) systems.

Some solutions to similar problems have been proposed in the literature. In
[4], a linear time invariant (LTI) Infinite Horizon Linear Quadratic Regulator
(IHLQR) problem was investigated. The present paper takes a similar approach,
with the major difference being that [4] considers infinite horizon, time invariant
dynamics and no terminal cost. The algorithm is proposed as an Adaptive
Dynamic Programming (ADP) technique, which utilise successive estimates of
the value function to estimate the optimal control law. [5] and [6] provide good
reviews of existing ADP techniques. Although the algorithm proposed in the
current paper follows a similar structure, the authors have chosen not to describe
it as ADP, as value function is not explicitly used to estimate the optimal control
gain.

Other approaches also exist for the FHLQR problem, but with discrete time
dynamics — [7] proposes an adaptive algorithm for the Discrete Time FHLQR
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problem with constant dynamics while [8] uses an extremum-seeking iterative
approach to find an open-loop control sequence for the discrete time FHLQR
problem with time varying dynamics.

Similar problems exist in Iterative Learning Control, such as the Linear
Quadratic Optimal Learning Control [9] and the norm-optimal iterative learn-
ing control [10, 11], where optimal performance is sought over a finite horizon of
each iteration. However, these algorithms seek an optimal control trajectory for
the given task, as opposed to an optimal control law for a family of tasks char-
acterised by the given cost function. Fundamentally, they require an identical
initial conditions for each iteration, and only work when the optimal trajectory
is identical for all iterations.

The present paper therefore proposes an algorithm to handle the continuous
time case, where no knowledge of the system dynamics is required, other than
that they are linear and time varying.

1.1. Notation

For any x ∈ Rn, |x| =
√
xTx. For any A ∈ Rn×m, |A| is its induced matrix

norm. The set consisting of all continuous functions defined over Rn×m over
[t0, tf ] for any n,m ∈ N is denoted Cn×m[t0, tf ]. For any A(·) ∈ Cn×m[t0, tf ],

‖A‖n×ms = max
t0≤t≤tf ]

|A(t)|.

For a given x ∈ Rn, and a given V = V T ∈ Rn×n, xTV x can be written as

x̄T v̄ with x̄ ∈ R
n(n+1)

2 and v̄ ∈ R
n(n+1)

2 , where:

v̄ = [V11, 2V12, ..., .2V1n, V22, 2V23, ...,

2V2n, ..., Vn−1,n−1, 2Vn−1,n, Vnn]T (1)

x̄ = [x2
1, x1x2, ..., x1xn, x

2
2, x2x3, ...,

x2xn, ..., x
2
n−1, xn−1xn, x

2
n]T (2)

where Vij represents the element of V ∈ Rn×n in the ith row and jth column
and xi represents the ith element in vector x.

Furthermore, yTKx, where x ∈ Rm and y ∈ Rn, and K ∈ Rn×m can be
written as (x⊗ y)k with x⊗ y ∈ Rnm where:

x⊗ y = [x1y1, x1y2, ..., x1ym, x2y1, ...,

x2ym, ..., xny1, ..., xnym−1, xnym]T (3)

k = [K11,K21, ...,Kn1,K12,K22, ...,

Kn2, ...,K1m, ...,Knm]T (4)

2. Problem Formulation

The systems of interest take the following form:

ẋ(t) = A(t)x(t) +B(t)u(t), x(t0) = x0 (5)
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where x(t) ∈ Rn, u(t) ∈ Rm and dynamics matrices A(·) ∈ Cn×n[t0, tf ] and
B(·) ∈ Cn×m[t0, tf ].

The objective of the Finite Horizon (FH) Linear Quadratic Regulation (LQR)
problem is to minimise the following cost function, subject to the dynamic sys-
tem (5):

J(u(·)) = xT (tf )Φfx(tf )

+

∫ tf

t0

(
xT (t)Q(t)x(t) + uT (t)R(t)u(t)

)
dt (6)

where x is the resulting trajectory from the dynamics (5), Φf ∈ Rn×n is sym-
metric positive semidefinite (Φf = ΦTf ≥ 0), Q(·) ∈ Cn×n[t0, tf ] is also symmet-

ric positive semidefinite, and R(·) ∈ Cm×m[t0, tf ] is symmetric positive definite
(R(t) = R(t)T > 0).

For the cost function (6) subject to (5) the optimal control law is a time-
varying feedback control scheme of the following form:

u(t) = −K∗(t)x(t), ∀t ∈ [t0, tf ], (7)

where K∗(t) ∈ Cm×n[t0, tf ] satisfies

K∗(t) = R−1BT (t)P (t), (8)

here P (t) ∈ Cn×n[t0, tf ] is the solution of the following Differential Riccati
Equation (DRE) [12]:

Ṗ (t) = −A(t)TP (t)− P (t)A(t)−Q(t)

+ P (t)TB(t)R−1(t)B(t)TP (t) (9)

subject to P (tf ) = Φf .
It is noted that this is a standard optimal controller of full state feedback

form, and thus for the purposes of this work it is assumed that all states are
known and measurable. This is the case for many engineered systems.

3. Preliminaries

Kleinman [3, Theorem 8, page 53] proposed a method of iteratively solving
the DRE offline, using a dynamic programming approach to iteratively solve the
DRE. This section introduces the algorithm and two properties of this algorithm
are identified to be later used in the analysis.

3.1. Kleinman’s Iterative Solution to the FH LQR Problem

Analysis and description of the algorithm requires the definition of the Cost-
to-go Matrix, Vk(t), for a given control gain Kk(t) as the solution to:

V̇k(t) =− [A(t)−B(t)Kk(t)]TVk(t)− Vk(t)[A(t)−B(t)Kk(t)]

−Q(t)−KT
k (t)R(t)Kk(t) (10)

with final condition Vk(tf ) = Φf . Utilising this definition, the following was
proposed in [3].
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Proposition 1 (Kleinman’s Algorithm [3]). For the FH LQR problem, with
system dynamics (5) and cost function (6), if the following algorithm is followed:

1. Define arbitrary K0(t), set k = 0

2. Solve for Vk(t) using Equation (10)

3. Update Kk+1(t) through:

Kk+1(t) = R−1(t)BT (t)Vk(t) (11)

4. Set k = k + 1 and go to 2.

Then:

1. P (t) ≤ Vk+1(t) ≤ Vk(t), for all k ∈ N≥0

2. Vk(t) converges to P (t) uniformly1

3. Kk(t) converges to K∗(t) uniformly.

where K∗(t) is as defined in (8). The algorithm will monotonically converge to
the value function associated with the optimal control gain. ◦

The proof of Proposition 1 is given in [3]. This is an iterative process, in
which successive estimates of the optimal control gain are made. The algorithm
provides a less computationally expensive method of solving the DRE, as the
algorithm involves iteratively solving a linear matrix equation (10), rather than
the quadratic DRE (9). However, the complete knowledge of the dynamics of
the system (A(t) and B(t)) is required to solve (10). In the sequel, we explore
some properties of Kleinman’s algorithm.

3.2. A Converse Theorem for Kleinman’s Algorithm

The first property generalises the Converse Theorem proposed in [13] to
characterize the convergence properties of Vk(t) in the algorithm.

It is noted that Vk(t) is directly related to Kk(t) through (10). Therefore,
for any Kk(t), we can write Vk(t) as V (t,Kk(t), A(t), B(t), Q(t), R(t)). A new
variable Σk(t) = [V (t,Kk(t))− P (t)] ∈ Cn×n[t0, tf ] is now introduced. Using
the results listed in Proposition 1, the update laws (10) and (11) can be rewritten
as:

Σk+1(t) = f (Σk(t), A(t), B(t), Q(t), R(t)) (12)

with Σk(tf ) = 0n×n for any k ∈ N≥0. Here the mapping f satisfies Cn×n[t0, tf ]×
Cn×n[t0, tf ]× Cn×m[t0, tf ]× Cn×n[t0, tf ]× Cm×m[t0, tf ]→ Cn×n[t0, tf ].

Proposition 1 indicates that the system (12) is uniformly globally asymp-
tomatically stable (UGAS) with respect to the set Cn×n[t0, tf ] (see [13, Defini-
tion 2.1] for the definition of UGAS for discrete-time nonlinear systems — the
same definition can be extended to system (12)). By using Converse Theorem
[13, Theorem 1 & Lemma 2.8], and noting importantly that the convergence
has no dependence on iteration number k, the following property holds:

1The sequence Vk(t) converges to P (t) uniformly indicates that lim
k→∞

‖Vk − P‖n×n
s = 0.
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Property 1. Let Vk and Kk be defined as per Kleinman’s algorithm, leading
to the dynamic system (12) and αl, l = 1, 2, 3 be class-K∞ functions 2. Then
there exists a continuous function W : Rn×n → R≥0 such that for any Σ ∈
Cn×n[t0, tf ]:

1 W (Σ) is bounded by:

α1 (|Σ|) ≤W (Σ) ≤ α2 (|Σ|) , (13)

2 The update law (12) satisfies:

W (f (Σ, A,B,Q,R))−W (Σ) ≤ −α3 ((|Σ|) (14)

Remark 1. [13] defines a function W : N≥0×Cn×n[t0, tf ]→ R≥0, however, in
Kleinman’s algorithm, the convergence has no dependence on iteration number
k. Therefore, the converse function defined for this problem is independent of
k.

3.3. Property of the Cost-to-go Matrix

A property of the Cost-to-go Matrix Vk(t) is constructed utilising a system
input which is perturbed by an excitation signal w(t), i.e. when considering the
dynamics using the kth estimate of K∗(t):

u(t) = −Kk(t)x(t) + w(t), (15)

where w ∈ Rm.

Property 2. Let t0 ≤ ta < tb ≤ tf and x(t) be a trajectory obtained from
applying (15) to (5). Then the following equality holds

xT (tb)Vk(tb)x(tb)− xT (ta)Vk(ta)x(ta)

=

∫ tb

ta

[
2wT (t)R(t)Kk+1(t)x(t)

−xT (t)(Q(t) +KT
k (t)R(t)Kk(t))x(t)

]
dt (16)

Proof: Using the dynamics of the system with control law (15) and the
derivative of the Cost-to-go matrix (10), an expression for d

dt

(
xT (t)Vk(t)x(t)

)
can be found. Integrating over t = ta to t = tb, and substituting BT (t)Vk(t) =
R(t)Kk+1(t) produces the above property. �

4. Proposed Algorithm

This section presents an algorithm which iteratively solves the Continuous
Time FHLQR problem without requiring the explicit knowledge of the dynamics
of the system. A high level overview of the proposed algorithm is first presented,
followed by more a detailed analysis of each iteration of the outer loop, and
finally the convergence of the algorithm to the optimal control gain is shown.

2A function γ : R≥0 → R≥0 is a K∞ function if it is continuous, strictly increasing, γ(0) = 0
and γ(s)→∞ as s→∞.
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4.1. High Level Overview

The overall structure of the proposed algorithm is shown in Figure 1. The
nested structure contains two loops (both in the iteration domain), and allows
two objectives to be fulfilled. The objective of the Outer Loop (index k) is to
iterate over estimates of K∗(t), to eventually converge to a region around K∗(t),
along the solutions of Klienman’s Algorithm. Within the Inner Loop (index j),
the computed feedback gain (Kk(t)) is applied along with sufficient excitation
(in the j domain) to generate an appropriate number of online measurements of
state trajectories, which are then used to estimate Kk+1(t) and Vk(t) at given
sampling points.

Figure 1: Proposed Algorithm Structure

4.1.1. Notation for the Algorithm

A new set of notation is defined in Table 1 for the remainder of the paper,
based on the notation used in Section 3 with modifications to cater for the
features in the proposed algorithm.
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Table 1: Notation and Symbols for Different Control Gains

K(t) Description V (t) Σ(t)
K∗(t) The optimal control

gain
P (t) 0

Kk(t) The control gain ap-
plied at the kth itera-
tion

Vk(t) Σk(t)

K∗k+1(t) The next estimate of
the Optimal Control
Gain as defined by
Klienman’s Algorithm,
where the previous
point is Kk(t)

V ∗k+1(t) Σ∗k+1(t)

K̃∗k+1(t)

A piecewise approxi-
mation of K∗k+1(t), de-
fined:
K̃∗k+1(t) = K∗k+1(ti)
∀t ∈ [ti, ti+1),
i = 0, ..., N − 1

unused Σ̃∗k+1(t)

K̂∗k+1(t) A least squares esti-
mate of K̃∗k+1(t)

unused Σ̂∗k+1(t)

It is important to note that Kk(t) is the gain applied at the kth iteration
of the outer loop. This has the associated cost-to-go matrix Vk(t). This is
not the same as the gain as calculated by Klienman’s algorithm. For this,
K∗k+1(t) is used. That is, given Kk(t) with associated cost-to-go matrix, Vk(t),

K∗k+1(t) = R−1(t)BT (t)Vk−1(t). The reader is also reminded that each of these
matrices can be represented in a vector form as discussed in Section 1.1.

4.2. Outer Loop

Given any arbitrary Kk(t) ∈ Cm×n[t0, tf ], K∗k+1(t) can be computed based
on the knowledge of A(t), B(t) using Kleinman’s Algorithm. Without the knowl-
edge of A(t), B(t), Property 2 and Least Square Estimation can be used to
estimate K∗k+1(t) and Vk(t). As continuous functions are difficult to identify ex-
plicitly, these two functions are discretised over [t0, tf ] so that parameter identi-
fication methods can be applied. A sampling period T is therefore selected such
that there exist N =

tf−t0
T + 1 sampling instants: ti = t0 + iT, i = 0, . . . , N .

The proposed algorithm attempts to find a piecewise constant approximation
of K∗k+1(t) at time instants tj , j ∈ [0, ..., N − 1]. This discretisation, of course,
introduces an error, however, it will be shown that this error can be bounded.
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4.2.1. Least Square Estimation of Kk+1(t) and Vk(t) at Each Sampling Instant

With the given Kk(t), the system has the following controller and the cor-
responding closed-loop dynamics:

uk(t) = −Kk(t)xk(t) + wk(t)

xk(t) = (A(t)−B(t)Kk(t))xk(t) +B(t)wk(t),xk(0) ∈ Rn. (17)

By applying Property 2 in any interval [ti, ti+1], i = 0, . . . , N −1, it follows that

xTk (ti+1)Vk(ti+1)xk(ti+1)− xTk (ti)Vk(ti)xk(ti)

=

∫ ti+1

ti

[
2wT

k (t)R(t)K∗k+1(t)xk(t)
]
dt

−
∫ ti+1

ti

[
xTk (t)

(
Q(t) +KT

k (t)R(t)Kk

)
xk(t)

]
dt. (18)

With the introduction of K̃∗k+1(t) = K∗k+1(ti),∀t ∈ [ti, ti+1), i = 0, ..., N − 1,
using the notation from Section 1.1, and introducing:

δTi (xk,wk) := 2

∫ ti+1

ti

(xk(t)⊗RT (t)wk(t))T dt (19)

γi(xk,Kk)

:= −
∫ ti+1

ti

[
xTk (t)(Q(t) +KT

k (t)R(t)Kk(t))xk(t)
]
dt (20)

ρi(xk,wk)

:= 2

∫ ti+1

ti

(x0(t)⊗RT (t)wk(t))T (k∗k+1(t)− k̃∗k+1(ti))dt (21)

(18) can be written as:

(x̄k)
T

(ti+1)vk(ti+1)− (x̄k)
T

(ti)vk(ti)

= δTi (xk,wk) · k̃∗k+1(ti) + γi(xk,Kk) + ρi(xk,wk) (22)

with Vk(tN ) = Φf , and where k̃∗k+1(ti) is the vector form of K̃∗k+1(t) at t ∈
[ti, ti+1], and vk(ti+1) is the vector form of Vk(ti).

Assuming knowledge of v̄k(ti+1), this equation can be used as the basis

to estimate ¯̂vk(ti) and
¯̂
k∗1(ti). However, (22) is a scalar equation, whereas

v̄k(ti) ∈ R
n(n+1)

2 and k̃∗k+1(ti) ∈ Rnm — they are not scalar. Therefore, to

estimate ¯̂vk(ti) and k̃∗k+1(ti), more information is required. This is addressed
using a Least Squares Estimation (LSE). In order to use a LSE, a sequence of
dither signals wk,j(t), j = 1, 2, . . . , ` are required to generate sufficient excitation
along the inner loop (j) iteration domain. For a sufficiently large `, and with
sufficient variation in the excitation signals, it is possible to estimate v̄k(ti) and
k̃∗k+1(ti).
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More precisely, at each inner loop iteration j = 1, . . . , `, dynamics are of the
form:

uk,j(t) = −Kk(t)xk,j(t) + wk,j(t)

xk,j(t) = (A(t)−B(t)Kk(t))xk,j(t) +B(t)wk,j(t) (23)

where xk(0) ∈ Rn. Utilising this information, at time ti, ` equations in the form
of (22) can be obtained. By using the following notation

Xk,i =


x̄Tk,1(ti)

x̄Tk,2(ti)
...

x̄Tk,`(ti)

 ∆k,i =


δTi (xk,1,wk,1)

δTi (xk,2,wk,2)
...

δTk,i(xk,`,wk,`)



ck,i =


γi(xk,1,Kk)
γi(xk,2,Kk)

...
γi(xk,`,Kk)

 ε0,i =


ρi(xk,1,wk,1)
ρi(xk,2,wk,2)

...
ρi(xk,`,wk,`)

 (24)

this leads to the following matrix equation:

[
Xk,i ∆k,i −Xk,i+1

]  v̄k(ti)

k̃∗k+1(ti)
v̄k(ti+1)

 = −ck,i − εk,i (25)

At i = N − 1, v̄k(ti+1) = v̄k(tN ). Furthermore, at all iterations, the value
εk,j is unknown, however, can be made small with small sampling period T .

Consider now the least squares problem, in which all time steps are aug-
mented into a single estimation. With the following definitions:

Φk =


Xk,0 ∆k,0 −Xk,1 0 . . . 0 0

0 0 Xk,1 ∆k,1 . . . 0 0
...

...
...

...
. . .

...
...

0 0 0 0 . . . Xk,N−1 ∆k,N−1


ck =

[
−ck,0,−ck,1, . . . ,−ck,N +Xk,N

¯̂vk(tN )
]T
,

εk = [εk,0, εk,1, . . . , εk,N ]
T

ξk = [¯̂vk(t0), k̂∗k+1(t0), ¯̂vk(t1), k̂∗k+1(t1),

. . . , ¯̂vk(tN−1), k̂∗k+1(tN−1)]T (26)

where Φk ∈ RN`×N(n(n+1)
2 +nm), ck, εk ∈ RN` and ξk ∈ RN(n(n+1)

2 +nm), and

k̂∗k+1(ti) is an estimate of k̃∗k+1(ti), the following least squares problem can be
posed:

Φkξk = ck (27)
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It is noted that ξk contains estimates for v̄k(t) and k̃∗k+1(t) (rather than k∗k+1(t))
at each sampling instant ti, and thus εk can be considered a disturbance to the
solution, and the error can be bounded by:

δξk = κ(Φk) ‖εk‖ (28)

where κ(Φk) is the condition number of the matrix Φk (see [14] for complete
definition).

Utilising the result of this least squares problem, k̂∗k+1(ti) for i = 0, ..., N −1
can be used as a feedback control gain Kk+1(t) in the piecewise constant form:

Kk+1(t) ≡ K̂∗k+1(ti),∀t ∈ [ti, ti+1), i = [0, .., N − 1] (29)

The rest of this section will show that Kk+1(t) ≡ K̂∗k+1(t) can be made
arbitrarily close to K∗k+1(t). This can be shown by demonstrating two facts:

1. The discretisation error
∣∣∣k∗k+1(ti)− k̃∗k+1(ti)

∣∣∣ can be made arbitrarily small.

2. The estimation error
∣∣∣k̂∗k+1(ti)− k̃∗k+1(ti)

∣∣∣ can be made arbitrarily small

The following fact comes from the uniform continuity of the k∗k+1(t) over a
compact time interval [0, T ].

Fact 1. Let (ν1,∆1) be an arbitrary positive pair. There exists a sufficiently
small T ∗1 , such that for any continuous function k∗k+1(t) satisfying

∥∥k∗k+1

∥∥
s
≤

∆1 and any T ≤ T ∗1 and N1 =
tf−t0
T is an integer such that at each sampling

instant tj , j = 1, . . . , N1, the following inequality holds

max
{∣∣∣k∗k+1(t)− k̃∗k+1(ti)

∣∣∣} ≤ ν1

∀t ∈ [ti, ti+1],∀i = 0, ..., N − 1 (30)

Before the introduction of the second fact conditioning techniques [14] for the
matrix are now introduced. For the purposes of this algorithm, it is obvious that
the estimate of k̃∗k+1(ti) is of greater interest, whereas v̄k(ti) has less importance.

As such, to minimise the impact of the error in the estimate of k̃∗k+1(ti) the least
squares problem (27) is conditioned as:

ΦkD
−1
k Dkξk = ck, (31)

where Dk ∈ RN(n(n+1)
2 +nm)×N(n(n+1)

2 +nm) is a diagonal conditioning matrix.
This matrix serves as a scaling factor in estimating v̂k(ti) and k̂k+1(ti) terms.

In particular, Dk is chosen such that the elements corresponding to k̂k+1(ti) are
1, i.e. it is of the form:

Dk = diag (s0, 1nm×1, s1, 1nm×1, ..., sN−1, 1nm×1) , (32)

where si ∈ R
n(n+1)

2 for i = [0, .., .N − 1], and 1nm×1 is a Rnm vector of ones.
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The least squares can then be solved in a two-step process:

Dkξk =
(
ΦkD

−1
k

)†
ck (33)

ξk = D−1
k

(
ΦkD

−1
k

)†
ck (34)

where
(
ΦkD

−1
k

)†
is the pseudoinverse of

(
ΦkD

−1
k

)
.

Based on this, the error in the estimate of (Dkξk) is bounded by:

δ(Dkξk) ≤ κ(ΦkD
−1
k ) |εk| (35)

As Dk is a diagonal matrix, D−1
k is simply:

D−1
k = diag

(
s−1

0 , 1nm×1, s
−1
1 , 1nm×1, ..., s

−1
N−1, 1nm×1

)
(36)

where s−1
i ∈ R

n(n+1)
2 is a vector in which each element is the reciprocal of the

corresponding element in si. Therefore, the error in the estimate of the elements
in k̂∗k+1(ti) is bounded by:∣∣∣k̂∗k+1(ti)− k̃∗k+1(ti)

∣∣∣ ≤ κ(ΦkD
−1
k ) |εk| (37)

The excitation signals need to be well-selected in order to ensure that the
estimation error is still bounded. The next assumption assumes that by using
enough excitation signals wk,j , j = 1, . . . , `, for any iteration k, the solution
of the LSE is always bounded. It is worthwhile to highlight that the tuning
parameters in the design are {`, T}.

The following assumption is thus needed:

Assumption 1. For any given discretisation step size T = ti+1−ti, i = [0, .., N−
1], λ > 1, k ∈ N≥0, and bound on magnitude of excitation signal bw > 0, there
exists a positive integer `∗ such that for any ` ≥ `∗, there are some appropri-
ate set of discretisation signals wk,j , j = 1, ..., .`, with ‖wk,j‖ ≤ bw and some
scaling matrix in the form of (32) such that κ(ΦkD

−1
k ) ≤ λ.

Remark 2. This assumption is similar to a persistent excitation condition
needed for LSE. Improving the condition number can be done both by increasing
variance in the wk,j signals and using the Dk matrix. The largest differences
in relative magnitudes in Φk are due to the difference between ζk,i components
(proportional to the magnitude of the state xk,i only), and the components of
µk,i (proportional to the state, input weighting matrix R(t), excitation signals
wk,j(t) and, importantly, discretisation step size T ). The Dk matrix can be
used to bring these elements to a similar orders of magnitude once Φk has been
computed. The variance in the set of wk,j(t) signals can then be used to ensure
suitable inter-row independence. It is also noted that `∗ is also highly dependent
on the dimension of the system. With a larger number of states and control
inputs, the number of parameters to be identified increases, and thus more iter-
ations are required to achieve sufficient excitation.

12



Remark 3. It is worthwhile to highlight that the tuning parameters are selected
sequentially. The sampling interval T and bound on the magnitude of the ex-
citation signal bw can be first selected, creating a bound on the discretisation
error. Then a family of the dither signals satisfying the bound (including the
number of inner loop iterations `) can be selected.

Fact 2. Given Assumption 1 and (ν2, bw, λ, `
∗), there exists a sufficiently small

T ∗2 , such that for any T < T ∗2 and N2 =
tf−t0
T is an integer, such that at each

sampling instant tj , j = 1, . . . , N2, the following inequality holds

max
{∣∣∣k̂∗k+1(ti)− k̃∗k+1(ti)

∣∣∣} ≤ ν2

∀t ∈ [ti, ti+1], ∀i = 0, ..., N − 1 (38)

Proof: Noting that εk is expressed as

εk,i =


2
∫ ti+1

ti
qk,1(k∗k+1(t)− k̃∗1(ti))dt

2
∫ ti+1

ti
qk,2(k∗k+1(t)− k̃∗1(ti))dt

...

2
∫ ti+1

ti
qk,`(k

∗
k+1(t)− k̃∗k+1(ti))dt

 (39)

where qk,i = (xk,i(t) ⊗ RT (t)wk,i(t))
T . Therefore, the bound of |ε0| is propor-

tional to the size of sampling T . The proof follows by using (37) and Assumption
1. �

4.2.2. Convergence Towards K∗(t)

To prove convergence towards K∗(t), the converse theorem in Property 1
is used. W (Σ) is bounded by two K∞ functions of |Σ|. Therefore, W (Σ) can
be used as a measure of the optimality of the solution. That is, a larger value
indicates a less optimal solution, and a value of 0 indicates the optimal solution.
As such, if it can be shown that the change in W (Σ) is negative, K̂k+1(t) is
more optimal than Kk(t).

This is formalised in the following theorem, which also utilises the fact that
K̂k+1(t) can be made arbitrarily close to K∗k+1(t) with sufficiently small T .

Theorem 1. Let (∆, ν) be a positive pair. For any Kk(t) satisfying |Σk(t)| ≤ ∆
for any t ∈ [t0, tf ], there exists some T ∗ such that for any T < T ∗, there exists
a bw, some positive integer `∗ (by Assumption 1), and ρ < 1 such that given
` ≥ `∗, appropriately constructed excitation signals wk,j , j ∈ [1, .., `] satisfying

‖wk,j‖s ≤ bw can be constructed such that Kk+1(t) ≡ K̂∗k+1(t) computed utilising
the least squares estimation (31), satisfies

W (Σ̂k+1) ≡W (Σ̂∗k+1) ≤ ρW (Σk) + ν, (40)

Proof: It is noted that Σ = [V (t,K(t))− P (t)], W (Σ) is continuous in Σ,
and V (t) is also continuous in K(t). Therefore, W (Σ) varies continuously with
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K(t). As such, W (Σ(K̂k+1(t)) can be arbitrarily close to W (Σ(Kk+1(t)) by
selecting sufficiently small sampling utilising Fact 1 and Fact 2. From Property
1, there exists some K∞ function α3(◦) such that:

W (Σ∗k+1)−W (Σk) ≤ −α3(|Σk|) (41)

Therefore,

W (Σ̂∗k+1)−W (Σk)

= W (Σ∗k+1)−W (Σk)−W (Σ∗k+1) +W (Σ̂∗k+1)

≤ −α3(|Σk|)−
∣∣∣W (Σ∗k+1)−W (Σ̂∗k+1)

∣∣∣ (42)

Two cases are considered:
Case 1: |Σk| ≤ α−1

2

(
ν
2

)
. Here α2 comes from Property 1. it is possible to select

a sufficiently small T ∗ such that for any T ∈ (0, T ∗)∣∣∣W (Σ̂∗k+1)−W (Σ∗k+1)
∣∣∣ ≤ ν

2
. (43)

Consequently, it follows that

W (Σ̂∗k+1) ≤W (Σk) +
ν

2
≤ α2

(
α−1

2

(ν
2

))
+
ν

2
≤ ν. (44)

Case 2: α−1
2

(
ν
2

)
≤ |Σk| ≤ ∆ . Under such a situation, by choosing a sufficiently

small T ∗ such that for any T ∈ (0, T ∗), we have

W (Σ∗k+1)−W (Σ̂∗k+1) ≤ α3(|Σk|)
2

(45)

W (Σ̂∗k+1)−W (Σk) ≤ −α3(|Σk|)
2

≤ −α3 ◦ α−1
1 (W (Σk))

2

⇒W (Σ̂∗k+1) ≤W (Σk)− α3 ◦ α−1
1 (W (Σk))

2
(46)

This indicates that there exists ρ ∈ (0, 1) such that W (Σk) − α3◦α−1
1 (W (Σk))

2 ≤
ρW (Σk) for any α−1

2

(
ν
2

)
≤ |Σk| ≤ ∆. Consequently, it has

W (Σ̂∗k+1) ≤ ρW (Σk). (47)

Combining the two cases, we have

W (Σ̂∗k+1) ≤ max {ρW (Σk), ν} ≤ ρW (Σk) + ν, ∀ |Σk| ≤ ∆ (48)

This completes the proof. �
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Remark 4. It is also noted that presence of measurement error can also intro-
duce an error into K̂k+1, due to the introduction of errors into the matrices used
in the least squares operation. However, errors associated with this error may
be mitigated with appropriate filtering of the measurements. Zero-mean noise in
the dynamics of the system would not have as significant an effect, as the effects
of this noise on the trajectory average out over sampling periods and iterations.

4.3. Main Result
The main result of this paper is stated in Theorem 2. It shows that for any

desired accuracy there exists some discretisation step size T ∗ such that when
the algorithm is applied with T < T ∗, it will converge on a set of gains close
enough to optimal.

Theorem 2. Let (∆, ν) be a positive pair. For any K0(t) satisfying |Σ0(t)| ≤
∆, there exists some T ∗ > 0, such that if T < T ∗ there exists some bw such
that Assumption 1 holds, and some associated positive integer `∗ , ` ≥ `∗,
such that, with appropriately constructed excitation signals wk,j , j ∈ [1, .., `]
satisfying ‖wk,j‖s ≤ bw, there exists a class-K∞ function α4 such that the
proposed algorithm in Figure 1 converges to a cost close to optimal, i.e:

lim sup
k→∞

|Σk| ≤ α4(ν) (49)

Proof: The proof comes directly from repeating Theorem 1 as

W (Σ̂∗k) = W (Σk) ≤ ρW (Σk−1) + ν

= ρW (Σ̂k−1) + ν

≤ ρ2W (Σk−2) + ρν + ν

...

≤ ρkW (Σ0) +

k∑
s=0

ρk−sν (50)

This completes the proof. �
The convergence of the algorithm can be illustrated by the diagram in Figure

2. It can be observed at each iteration, Klienman’s algorithm proposes some new
gain K∗k+1(t) which is more optimal than Kk(t). The errors in approximating
K∗k+1(t) can be bounded with the appropriate choice of tuning parameters,

such that K̂k+1(t) is close to K∗k+1(t) in optimality. Therefore, the algorithm
converges to a region close to optimal as k →∞.

5. Simulations

In this section, the performance of the algorithm is shown through a number
of simulations. In particular, the simulations will illustrate (1) the convergence
of the algorithm to near optimal; (2) potential difficulties in achieving excitation
when smaller T is chosen; and (3) the convergence of the algorithm to closer to
optimal when a smaller T is chosen, however, at increased computational cost.
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W (Σ)

k

Σ0

Σ∗1

Σ̂∗1 = Σ1

Σ∗2

Σ̂∗2 = Σ2

Σ∗3

Σ̂∗3 = Σ3

. . .

Figure 2: The convergence properties of the algorithm. Σk represents the gain Kk(t) ap-
plied at each iteration. The dotted lines represent the trajectory of Klienman’s Algorithm,
the solid ‘x’ represents the trajectory of the algorithm due to the estimation error at each
location. The algorithm continues until convergence to the vicinity of W (Σk) = 0. Note

Σ̂∗k =
[
V
(
t, K̂∗k(t)

)
− P (t)

]
, and Σ∗k =

[
V
(
t,K∗k(t)

)
− P (t)

]
.

5.1. System Under Investigation

A simple system is presented in order to demonstrate the practicalities in-
volved in implementing this algorithm. However, the algorithm can be applied
in the same manner to more complex systems, such as those with time-varying
dynamics, or higher order systems. The system considered here is the simple
double integrator:

ẋ(t) =

[
0 1
0 0

]
x(t) +

[
0
1

]
u(t) (51)

For the purpose of this simulation, the following finite horizon task is used.
The cost matrices (which were chosen arbitrarily):

Q(t) =

[
0.4t+ 2 0

0 0.4t+ 2

]
; Φf =

[
5 0
0 5

]
R(t) =

[
2.5− 0.3t 0

0 2.5− 0.3t

]
(52)

with t0 = 0 and tf = 5.

5.2. Parameter Selection

In order to simplify the simulations, this paper presents changes in T , and
` for the purposes of achieving sufficient conditioning of the Φk matrices. The
choice of other parameters is outlined in this section. Other choices can be made
for any of these parameters.

The set of excitation signals for the simulations, given the bound wb = 0.1,
were set as arbitrary values in the range [−wb, wb], constant for each t ∈ [ti, ti+1).
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Each element in the scaling matrix was calculated as:

sk,i =

[
|Xk,i,0|
|∆k,i|

|Xk,i,1|
|∆k,i| ...

∣∣∣∣Xk,i,
n(n+1)

2

∣∣∣∣
|∆k,i|

]
(53)

where Xk,i,h is the hth column of Xk,i. This scales elements in the Xk,i

matrix to be a comparable order of magnitude to the ∆k,i matrix.
Finally, the initial value for the gain matrix was selected as K0(t) =

[
0 0

]
.

This again was an arbitrary choice, but selected for ease of repeatability.

5.3. Results

5.3.1. Convergence of the Algorithm

The first simulation is taken with T = 0.5s and ` = 6. The elements of the
cost-to-go matrix Vk(t) are shown in Figure 3. It can be seen that the estimates
of K∗(t) in the algorithm iteratively converge to optimal cost P (t) — that is,
the cost of the control scheme as k increases approaches optimal.
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Figure 3: Elements of Vk(t) for Double Integrator System with time step of 0.5 seconds.
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5.3.2. Compromise Between Computational Cost and Optimality

In the next set of simulations, different values of T are compared, to demon-
strate the trade-off between computational cost and optimality. In this case,
the T = 2.5, T = 0.5 and T = 0.05 cases are compared, setting ` = 10.

These cases are compared on two accounts. First, the optimality of the
solution is measured through computation of ‖V10 − P‖s. Secondly, the average
computational time for each outer loop iteration k is computed. The simulations
were performed in Matlab 2015a on computer with a Intel i5-4670K (3.4GHz)
Processor and 8.00 GB RAM. The results can be seen in Table 2.

Table 2: Performance of Algorithm with Varying T

T ‖V10 − P‖s Computational Time (s)
2.5 0.7 0.00032
0.5 0.17 0.00051
0.05 0.013 0.0029

*Computational time is average time taken for each iteration

It is apparent that reducing T produces a closer estimate of the optimal gain
— due to a smaller discretisation error, however at a greater computational cost.
Therefore such a tradeoff should be considered in any implementation of this
algorithm. It is also noted that this matrix is a sparse matrix, and there are a
number of more efficient solvers available (such as [15]), which can improve the
computation times of the algorithm.

5.3.3. Achieving Sufficient Excitation

Excitation in this algorithm is required to ensure the condition number of the
inverted matrix in the least squares estimate is sufficiently small, and therefore
that the algorithm converges. Given any T (set to bound the discretisation
error) and bw (set to bound the disturbance in the least squares estimate), the
condition number can be affected by tuning the number of inner loop iterations,
`, selection of the scaling matrices Dk, and selection of excitation signals wk,j(t).
As demonstrated in Section 5.3.2, a smaller T results in a more optimal solution
as k → ∞. However, due to the smaller T , changes in x between samples are
small, and thus this makes attaining sufficient excitation more difficult. Tuning
of the additional parameters can resolve this. As an example, Figure 4 illustrates
the convergence of the algorithm with T = 0.05s, ` = 20, whereas with ` = 6,
the algorithm quickly diverged.

6. Conclusion

This paper presents an algorithm which addresses the Finite Horizon Linear
Quadratic Regulator problem, without the need for explicit knowledge of the
dynamics of the system. This algorithm utilises a two-loop structure, in which
the inner loop (index j) is used to gather information about the system, and the
outer loop (index k) is used to make successive approximations of the optimal
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Figure 4: Elements of Vk(t) for Double Integrator System with time step of 0.05 seconds,
` = 20

control gain. This structure may also potentially be used in applications in which
the dynamics are slowly varying over iteration, or which are mostly iteration-
invariant but may change suddenly at a particular iteration, to ensure that a
control scheme which is close to optimal is maintained.
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